A characterization of weighted peetre K-functionals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of K-functionals and modulus of smoothness for fourier transform

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

متن کامل

A characterization of convex and semicoercive functionals

In this paper we prove that every proper convex and lower semicontinuous functional de ned on a real re exive Banach space X is semicoercive if and only if every small uniform perturbation of attains its minimum value on X.

متن کامل

Weighted Energy-dissipation Functionals for Gradient Flows

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz [MO08]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are ...

متن کامل

Neuromorphometric characterization with shape functionals.

This work presents a procedure to extract morphological information from neuronal cells based on the variation of shape functionals as the cell geometry undergoes a dilation through a wide interval of spatial scales. The targeted shapes are alpha and beta cat retinal ganglion cells, which are characterized by different ranges of dendritic field diameter. Image functionals are expected to act as...

متن کامل

Bias Reduction for k – Sample Functionals

We give analytic methods for nonparametric bias reduction that remove the need for computationally intensive methods like the bootstrap and the jackknife. We call an estimate pth order if its bias has magnitude n 0 as n0 → ∞, where n0 is the sample size (or the minimum sample size if the estimate is a function of more than one sample). Most estimates are only first order and require O(N) calcul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1989

ISSN: 0021-9045

DOI: 10.1016/0021-9045(89)90109-3